General Instructions Who Must Complete Form 2F?

You must complete Form 2F if you answered "Yes" to Item 1.2.5 on Form 1. If you operate a new or existing facility discharging storm water associated with industrial activity or with small construction activity that are required to obtain an individual permit or any other discharge of storm water that the department is evaluating for designation under ARM <u>17.30.1105(1)(f)</u> and is not a municipal storm sewer. Form 2F is required unless you are exempted by ARM 17.30.1322(11)(b) through (d).

If the discharge is composed of storm water and nonstorm water, the applicant must also submit Forms 2C, 2D, or 2E, as appropriate, in addition to Form 2F. See insert below.

- Forms 1 and 2F: Discharge composed entirely of stormwater.
- Forms 1, 2F, and 2C: Discharge of stormwater combined with process wastewater. Process wastewater is water that comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, waste product, or wastewater.
- Forms 1, 2F, and 2E: Discharge of stormwater combined with nonprocess wastewater. Nonprocess wastewater includes noncontact cooling water and sanitary wastes that are not regulated by effluent guidelines, except discharges by educational, medical, or commercial chemical laboratories.
- Forms 1, 2F, and 2D: Discharge of stormwater associated with industrial activity that will be combined with other new non-stormwater discharges.

Where to File Your Completed Form

Return this form, any supplemental forms, and applicable fees to:

Montana Department of Environmental Quality Water Protection Bureau PO Box 200901 Helena, MT 59620-0901

When to File Your Completed Form

Form 2F must be submitted at least 180 days before your present MPDES permit expires or, if you are a new discharger, at least 180 days before the date on which the discharge is to commence, unless DEQ has granted permission for a later date.

Fees

The Montana Water Quality Act requires that DEQ collect fees sufficient to cover the cost of issuing permits as well as the administrative costs associated with these activities. DEQ collects both application and annual fees. Fees vary depending upon the complexity, type, and strength of wastewater and the number of discharge points as set forth in ARM 17.30.201. DEQ will not process this application until all the requested information is supplied, the application is complete, and the appropriate fees are paid. Fee information is available on DEQ's website: www.deq.mt.gov or by contacting the Water Protection Bureau at (406)444-5546.

Public Availability of Submitted Information

DEQ will make information from MPDES permit application forms available to the public for inspection and copying upon request. You may not claim any information on Form 2F (or related attachments) as confidential. You may make a claim of confidentiality for any information that you submit that goes beyond the information required by Form 2F. If you do not assert a claim of confidentiality at the time you submit your information, DEQ may make the information available to the public without further notice to you. DEQ will handle claims of confidentiality in accordance with the Agency's business confidentiality regulations at ARM 17.30.1321 and 75-5-105, MCA.

Completion of Forms

Print or type in the specified areas only. If you do not have enough space on the form to answer a question, you may continue on additional sheets, as necessary, using a format consistent with the form.

Provide your MPDES permit number at the top of each page of Form 2F and any attachments. If your facility is new (i.e., not yet constructed), write or type "New Facility" in the space provided for the permit number. If you do not know your permit number, contact DEQ.

Definitions

Key terms used in the various MPDES application forms are included in the "Glossary" attachment. See ARM 17.30.1304, and 75-5-103(24), MCA.

Line-by-Line Instructions Section 1. Outfall Location

Item 1.1. Identify each of the facility's outfalls by number. For each outfall, specify the name of the receiving water and the latitude and longitude to 4 decimal places if reporting in decimal degrees or the nearest second if reporting in degrees, minutes, seconds. Latitude and longitude coordinates may be obtained in a variety of ways, including use of hand held devices (e.g., a GPS enabled smartphone), internet mapping tools (e.g., <u>https://nris.msl.mt.gov/</u>), geographic information systems (e.g., ArcView), or paper maps from trusted sources (e.g., U.S. Geological Survey or USGS). The coordinates of each outfall shall be the location where collected and concentrated stormwater flows are discharged from the facility. The first state water discharge encounters either directly or through a separate storm sewer system is the outfall's receiving water. If you need further guidance in responding to Item 1.1, refer to https://www.epa.gov/geospatial/latitudelongitudedata-standard.

Note: "Outfalls" are also referred to as "discharge points."

Form 2F has space for six outfalls. If your facility has more than this number, type your information on a separate sheet of paper in a format similar to that of the form. Make sure you note the MPDES permit number and facility name at the top of the page and indicate the specific item of the form to which you are responding - Item 1.1 in this case. In Sections 2, 4, 5, and 7 of this form, you will be asked to provide information by outfall number.

Section 2. Improvements

Item 2.1. Indicate if you are required by any federal, state, or local authority to meet an implementation schedule for constructing, upgrading, or operating wastewater treatment equipment or practices, or any other environmental programs that could affect the discharges described in this application. The requirements include but are not limited to permit conditions, administrative enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions. If yes, continue to Item 2.2. If no, skip to Section 3.

Item 2.2. Briefly identify and describe each applicable project (e.g., consent decree, enforcement order, or permit condition). For each condition,

specify the affected outfall number(s), the source(s) of the discharge, the required final compliance date, and the projected final compliance date.

Item 2.3. OPTIONAL ITEM. Indicate if you have attached any sheets describing any additional water pollution control programs (or other environmental projects that could affect your discharges) that you may now have underway or planned. If you attach additional sheets, indicate in the attachment whether each program is currently underway or is planned, and indicate your actual or planned schedule for construction. Be sure to note your MPDES permit number, and facility name at the top of any attached pages.

Section 3. Site Drainage Map

Item 3.1 Attach a site drainage map showing the topography of the facility. If a topographic map is unavailable, you may provide an outline of drainage areas served by the outfall(s) covered in the application. The site map must include the following information:

- 1. Each drainage and discharge structure.
- 2. The drainage area of each stormwater outfall.
- 3. Paved areas and buildings within the drainage area of each stormwater outfall; each past or present area used for outdoor storage or disposal of significant materials; each existing structural control measure to reduce pollutants in stormwater runoff; materials loading and access areas; and areas where pesticides, herbicides, soil conditioners, and fertilizers are applied.
- Each hazardous waste treatment, storage, or disposal facility (including each area not required to have a Resource Conservation and Recovery Act permit and is used for accumulating hazardous waste for less than 90 days under 40 CFR 262.34).
- 5. Each well where fluids from the facility are injected underground.

 Springs and other surface water bodies that receive stormwater discharges from the facility.
 When you have completed and attached your site map to Form 2F, answer "Yes" to Item 3.1.

Section 4. Pollutant Sources

Item 4.1. List all outfalls discharging stormwater. Provide an estimate of the impervious surface area drained by the outfall. Specify units of measure. Impervious surfaces are surfaces where stormwater runs off at rates significantly higher than background

rates—e.g., predevelopment levels. They include paved areas, building roofs, parking lots, and roadways.

Provide an estimate of the total surface area drained by each outfall within a mile radius of the facility. You may use the site map developed under Item 3.1 to estimate the total area drained by each outfall. For areas under 5 acres, consult DEQ to determine whether the area should be reported to the nearest tenth of an acre or nearest quarter of an acre.

Item 4.2. Provide a narrative description of the following:

- 1. Significant materials that in three years prior to the submittal of this application have been treated, stored, or disposed of in a manner to allow exposure to stormwater.
- 2. Method of treatment, storage, or disposal of such materials.
- 3. Materials management practices employed, in the three years prior to the submittal of this application, to minimize contact by these materials with stormwater runoff.
- 4. Materials loading and access areas.
- 5. The location, manner, and frequency in which pesticides, herbicides, soil conditioners, and fertilizers are applied.

Identify significant materials by chemical name, form (e.g., powder, liquid, etc.), and type of container or treatment unit. Indicate any materials treated, stored, or disposed of together. The term "significant materials" includes, but is not limited to: raw materials: fuels: materials such as solvents. detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under Section 101(14) of the Comprehensive Environmental Response, Compensation, and Liability Act; any chemical the facility is required to report pursuant to Section 313 of Title III of the Superfund Amendments and Reauthorization Act; and fertilizers; pesticides; and waste products such as ashes, slag, and sludge that have the potential to be released with stormwater discharges.

Item 4.3. For each outfall, list the location and type of existing structural and non-structural control measure(s) to reduce pollutants in stormwater runoff. Structural controls include structures that enclose materials handling or storage areas; structures that cover materials; and berms, dikes, or diversion ditches around manufacturing, production, storage, or

treatment units and retention ponds. Spill prevention plans, employee training, visual inspections, preventive maintenance, and housekeeping measures are examples of non-structural controls. Describe the treatment, including the schedule and type of maintenance activities performed, and the ultimate disposal of any solid or fluid wastes other than by discharge. For each structural control identified, indicate the type of treatment the stormwater receives using the codes in Exhibit 2F–1, at the end of the instructions. For each non-structural control identified, indicate "Not Applicable" in the "Codes from Exhibit 2F–1" column.

Section 5. Non-Stormwater Discharges

Item 5.1. Certify that all outfalls that should contain stormwater discharges associated with industrial activity have been tested or evaluated for the presence of non-stormwater discharges. Tests for such non-stormwater discharges can include smoke tests, fluorometric dye tests, analysis of accurate schematics, and others.

Item 5.2. Include a description of the method used, the date of any testing, and the onsite drainage points that were directly observed during a test used to support the certification in Item 5.1. All non-stormwater discharges must be identified in a Form 2C, 2D, or 2E. See "Who Must Complete Form 2F?" above for more information.

Section 6. Significant Leaks or Spills

Item 6.1. Describe any significant leaks or spills of toxic or hazardous pollutants at the facility within the three years prior to the submittal of this application. Include the approximate date and location of the spill or leak and the type and amount of material released.

Section 7. Discharge Information

Item 7.1. Answer whether the facility is a new source or new discharge. Contact DEQ to determine if your facility is a new source or new discharge.

Tables A, B, C, and D

Items 7.2 to 7.17. These items require you to collect and report data in Tables A through D, at the end of Form 2F, for the parameters and pollutants listed in Exhibits 2F–2, 2F–3, and 2F–4 (at the end of the instructions). The instructions for completing Tables A through D are table-specific, as are the criteria for determining who should complete them.

Important note: Read the "General Instructions for Reporting, Sampling, and Analysis" below before completing Items 7.2 to 7.17.

MPDES Application Form 2F Instructions

General Instructions for Reporting, Sampling, and Analysis

Important note: Read these instructions before completing Tables A through C and Section 7 of Form 2F.

General Items

Complete the applicable tables for each outfall at your facility. *Be sure to note MPDES permit number and applicable outfall number at the top of each table page* and any associated attachments.

You may report some or all of the required data by including attachments instead of completing Tables A through C for each of your outfalls so long as the sheets contain all of the required information and are similar in format to Tables A through C. For example, you may be able to print a report in a compatible format from the data system used in your gas chromatography/ mass spectrometry (GC/MS) analysis completed under Table B.

Table A requires you to report at least one analysis for each pollutant listed. Tables B and C require you to report analytical data in two ways. For some pollutants addressed in Tables B and C, if you know or have reason to suspect that the pollutant is present in your discharge, you may be required to list the pollutant and test (sample and analyze) and report the levels of the pollutants in your discharge. For all other pollutants addressed in Tables B and C, you must list the pollutant if you know or have reason to know that the pollutant is present in the discharge, and either report quantitative data for the pollutant or briefly describe the reasons the pollutant is expected to be discharged. (See Items 7.2 through 7.17 of the instructions for completing Tables A through C.). Base your determination that a pollutant is/will be present in your discharge on your knowledge of the facility's raw materials, material management practices, maintenance chemicals, history of spills and releases, intermediate and final products and byproducts, and any previous analyses known to you of your effluent or similar effluent.

Existing dischargers

If you are an existing discharger, you are required to report *actual* quantitative data. See "Use of Historic Data" below for use of historic data.

New dischargers

You may supply *estimated* data along with the source of each estimate. If you have quantitative data available, you must provide it. Base estimates on available, in-house or contractor engineering reports, or any other studies performed on the proposed facility. Use the following codes to report your source information in the "Source of Information" column:

tables A through C and Section 7 of 1 of the 21.				
	Data Source	Code		
	Engineering reports	1		
	Actual data from pilot plants	1		
	Estimates from other engineering reports	2		
	Data from other similar plants	3		
	Best professional estimates	4		
	Other (specify on table)	5		

No later than 24 months after your facility commences to discharge, you must complete and submit sampling and analysis data for the pollutants and parameters in Tables A through C. However, you need not report results for tests you have already performed and reported under the discharge monitoring requirements of your MPDES permit.

Analysis

Except as specified at 40 CFR 122.21(e)(3)(ii), all samples must be collected, preserved, and analyzed in accordance with approved analytical methods listed in 40 CFR Part 136, unless use of another method is required for the pollutant under 40 CFR chapter I, subchapter N. All methods must be sufficiently sensitive. A method is "sufficiently sensitive" when one of the following is met:

- The method minimum level (ML) is at or below the level of the applicable water quality criterion for the measured pollutant or pollutant parameter.
- The method ML is above the water quality criterion, but the amount of the pollutant or pollutant parameter in the facility's discharge is high enough that the method detects and quantifies the level of the pollutant or pollutant parameter in the discharge.
- The method has the lowest ML of the analytical methods approved under 40 CFR 136 or required under 40 CFR chapter I, subchapter N, for the measured pollutant or pollutant parameter.

The minimum level of quantitation means the lowest level at which the entire analytical system gives a recognizable signal and acceptable calibration point for the analyte, as determined by the procedure set forth at 40 CFR 136. In most cases the ML is equivalent to the Required Reporting Value (RRV) identified in Department Circular DEQ-7 unless otherwise specified in the permit (ARM 17.30.702). Laboratory analytical results reported as less than detection must achieve these RRVs or permitspecified MLs.

Consistent with 40 CFR 136, you may provide matrix- or sample-specific MLs rather than the

General Instructions for Reporting, Sampling, and Analysis Continued

published levels. Further, where you can demonstrate that, despite a good faith effort to use a method that would otherwise meet the definition of "sufficiently sensitive," the analytical results are not consistent with the quality assurance (QA)/quality control (QC) specifications for that method, then the MPDES permitting authority may determine that the method is not performing adequately and the MPDES permitting authority should select a different method from the remaining EPA-approved methods that is sufficiently sensitive consistent with 40 CFR 122.21(e)(3)(i).

When there is no analytical method that has been approved under 40 CFR 136; required under 40 CFR chapter I, subchapter N, and is not otherwise required by the MPDES permitting authority, you may use a suitable method but shall provide a description of the method [40 CFR 122.21(e)(3)(ii)]. When selecting a suitable method, other factors such as a method's precision, accuracy, or resolution, may be considered when assessing the performance of the method.

Effluent monitoring data must comply with the QA/QC requirements of 40 CFR 136 and other appropriate QA/QC requirements for standard methods for analytes not addressed by 40 CFR 136.

Sampling

Grab samples must be taken in the first 30 minutes of discharge (or as soon thereafter as practicable) for pH, temperature, cyanide, total phenols, residual chlorine, oil and grease, fecal coliform (including *E. coli*) and enterococci (previously known as fecal streptococcus at 40 CFR 122.26(d)(2)(iii)(A)(3)), and volatile organic compounds. You are not required to analyze a flow-weighted composite for these parameters.

For all other pollutants, both a grab sample collected during the first 30 minutes (or as soon thereafter as practicable) of the discharge and a flow-weighted composite sample must be analyzed. However, a minimum of one grab sample may be taken for effluents from holding ponds or other impoundments with a retention period of greater than 24 hours.

All samples must be collected from the discharge resulting from a storm event that is greater than 0.1 inches and at least 72 hours from the previously measurable (greater than 0.1 inch rainfall) storm event. Where feasible, the variance in the duration of the event and the total rainfall of the event should not exceed 50 percent from the average or median rainfall event in that area.

A grab sample must be taken during the first 30 minutes of the discharge (or as soon thereafter as practicable), and a flow-weighted composite must be taken for the entire event or for the first three hours of the event.

Grab and composite samples are defined as follows:

A **grab sample** is an individual sample of at least 100 milliliters collected during the first 30 minutes (or as soon thereafter as practicable) of the discharge. This sample is to be analyzed separately from the composite sample.

A flow-weighted composite sample may be taken with a continuous sampler that proportions the amount of sample collected with the flow rate or as a combination of a minimum of three sample aliquots taken in each hour of discharge for the entire event or for the first three hours of the event, with each aliquot being at least 100 milliliters and collected with a minimum period of 15 minutes between aliquot collections. The composite must be flow proportional; the time interval between either each aliquot or the volume of each aliquot must be proportional to either the stream (effluent) flow at the time of sampling or the total stream (effluent) flow since the collection of the previous aliquot. Aliquots may be collected manually or automatically. Where GC/MS volatile organic analysis is required, aliquots must be combined in the laboratory immediately before analysis. Only one analysis for the composite sample is required.

Use of Existing Data. Existing data may be used, if available, in lieu of sampling conducted solely for the purposes of this application, provided it is representative of the present discharge and was collected within 3 years of the application due date. If you sample for a listed pollutant on a monthly or more frequent basis, summarize the data collected within one year of the application for the pollutant(s) at issue.

Among the factors that would cause the data to be unrepresentative are significant changes in production level; changes in raw materials, processes, or final products; and changes in stormwater treatment. The MPDES permitting authority may request additional information, including current quantitative data, if they determine it to be necessary to assess your discharges. DEQ may allow or establish appropriate site-specific sampling procedures or requirements including sampling locations, the season in which the sampling takes

General Instructions for Reporting, Sampling, and Analysis Continued

place, the minimum duration between the previous measurable storm event and the storm event sampled, the minimum or maximum level of precipitation required for an appropriate storm event, the form of precipitation sampled (snow melt or rainfall), protocols for collecting samples under 40 CFR 136, and additional time for submitting data on a case-bycase basis.

Reporting

Clearly specify the units of measure for all pollutants in Tables A through C as concentration $(mg/L \text{ or } \mu g/L)$ and mass (lb/day), with the exception of flow, temperature, pH, color, and fecal coliform organisms. Flow, temperature, pH, color, and fecal coliform organisms must be reported as million gallons per day (mgd), degrees Celsius (°C), standard units, color units, and most probable number per 100 milliliters (MPN/100 mL), respectively.

All reporting of values for metals must be in terms of "total recoverable metal" unless all approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent chromium), or it is necessary to express the limitations for the metal in dissolved, valent, or total form as promulgated by an ELG or required by DEQ on a case-by-case basis.

If you measure only one grab sample and one flowweighted composite sample for a given outfall, complete only the "Maximum Daily Discharge" columns in the tables and enter "1" in the "Number of Storm Events Sampled" column. DEQ may require you to conduct additional analyses to further characterize your discharges.

If you measure more than one value for a grab sample or a flow-weighted composite sample for a given outfall and those values are representative of your discharge, you must report them. You must describe your method of testing and analysis. The "Average Daily Discharge" column on Tables A to C is *not* compulsory but should be filled out if data are available. To complete the "Average Daily Discharge" column, determine the average of all values within the last year and report the concentration and mass. Report the total number of storm events sampled under the "Number of Storm Events Sampled" column.

Substantially Identical Outfalls

If you have two or more substantially identical outfalls, you may request permission to sample and analyze only one outfall and submit the results of the analysis for all substantially identical outfalls. If your request is granted, submit the following information on a separate sheet attached to the application form: the identity of the outfall you did test and an explanation of how it is substantially identical to the outfall(s) that you did not test.

The collection of the samples for the reported analyses should be supervised by a person experienced in performing sampling of industrial wastewater or stormwater discharges. You may contact DEQ for detailed guidance on sampling techniques and for answers to specific questions. Any specific requirements in the analytical methods - for example, sample containers, sample preservation, holding times, and the collection of duplicate samples - must be followed.

The time when you sample should be representative of your normal operation, to the extent feasible, with all processes that contribute wastewater in normal operation, and with your treatment system operating properly with no system upsets. Collect samples from the center of the flow channel, where turbulence is at a maximum, at a site specified in your present MPDES permit, or at any site adequate for the collection of a representative sample.

Item 7.2 and Table A. All applicants must complete Table A. If the discharge is an existing discharge and your discharge is composed exclusively of stormwater (i.e., no process or nonprocess wastewater) then you only need to provide monitoring data for oil and grease, total phosphorus, total Kjeldahl nitrogen, and total nitrogen. Indicate "NA" for "not applicable" in the columns for all other parameters. Answer "Yes" to Item 7.2 once you have completed this task.

Item 7.3 and Table B. Indicate whether the facility is subject to an effluent limitations guideline (ELG) (see 40 CFR Subchapter N to determine which pollutants are limited in ELGs) or if the facility is subject to effluent limitations in an MPDES permit for its process wastewater or stormwater (if the facility is operating under an existing MPDES permit). If yes, continue to Item 7.4. If no, skip to Item 7.5.

Note: Stormwater discharges from certain industrial sources or activities have specific ELGs for which they must comply. These *stormwater-specific* ELGs include:

Regulated Discharge	40 CFR Section
Discharges resulting from spraydown or intentional wetting of logs at wet deck storage areas	Part 429, Subpart I
Runoff from phosphate fertilizer manufacturing facilities that comes into contact with any raw materials, finished product, byproducts or waste products (SIC 2874)	Part 418, Subpart A
Runoff from asphalt emulsion facilities	Part 443, Subpart A
Runoff from material storage piles at cement manufacturing facilities	Part 411, Subpart C
Mine dewatering discharges at crushed stone, construction sand and gravel, or industrial sand mining facilities	Part 436, Subparts B, C, and D
Runoff from hazardous waste and non-hazardous waste landfills	Part 445, Subparts A and B
Runoff from coal storage piles at steam electric generating facilities	Part 423
Runoff containing urea from airfield pavement deicing at existing and new primary airports with 1,000 or more annual non-propeller aircraft departures	Part 449

Item 7.4. In Table B, list all pollutants that are limited in an ELG to which the facility is subject and all pollutants listed in the facility's MPDES permit for its process wastewater (if the facility is operating under an existing MPDES permit) and provide quantitative data for each pollutant (provide actual data for existing dischargers and estimated data for new sources and new dischargers). If a pollutant in Exhibits 2F–2 or 2F–3 is indirectly limited by an ELG through an indicator (e.g., use of total suspended solids as an indicator to control the discharge of iron and aluminum), you must provide data for the pollutant in Table B. Complete one table for each outfall. Answer "Yes" to Item 7.4 once you have completed this task.

Item 7.5 and Table C. Table C requires you to address the pollutants in Exhibits 2F–2, 2F–3, and 2F–4 for each outfall. Pollutants in each of these exhibits are addressed differently. Indicate whether you know or have reason to believe any pollutants in Exhibit 2F–2 are present in the discharge. If yes, continue to Item 7.6. If no, skip to Item 7.7.

Item 7.6. For each outfall, list all pollutants in Exhibit 2F–2 that you know or have reason to believe are present in the discharge in Table C (except pollutants previously listed in Table B that are limited directly or indirectly by an ELG) and either report quantitative data or briefly describe the reasons the pollutant is expected to be discharged. Answer "Yes" to Item 7.6 once you have completed this task.

Item 7.7. This item asks if you qualify as a "small business." If so, you are exempt from the reporting requirements for the organic toxic pollutants listed in Exhibit 2F–3.

You can qualify as a small business in two ways:

- If your facility is a coal mine and if your probable total annual production is less than 100,000 tons per year, you may submit past production data or estimated future production (such as a schedule of estimated total production under 30 CFR 795.14(c)) instead of conducting analyses for the organic toxic pollutants;
- 2. If your facility is not a coal mine and if your gross total annual sales average less than \$100,000 per year (in second quarter 1980 dollars), you may submit sales data for those years instead of conducting analyses for the organic toxic pollutants.

The production or sales data must be for the facility that is the source of the discharge. The data should not be limited to production or sales for the process or processes that contribute to the discharge, unless those are the only processes at your facility. For sales data, in situations involving intra-corporate transfer of goods and services, the transfer price per unit should approximate market prices for those goods and services as closely as possible. Sales figures for years after 1980 should be indexed to the second quarter of 1980 by using the gross national product price deflator (second quarter of 1980 = 100). This index is available online from the U.S. Department of Commerce, Bureau of Economic Analysis at https://www.bea.gov/data/prices-inflation/gdp-pricedeflator. If you qualify as a small business according to the criteria above, answer "Yes" to Item 7.7 and skip to Item 7.18. Otherwise, answer "No" and continue to Item 7.8.

Item 7.8. Indicate whether you know or have reason to believe any pollutants in Exhibit 2F–3 are present in the discharge. If yes, continue to Item 7.9. If no, skip to Item 7.10.

Item 7.9. For each outfall, list all pollutants in Exhibit 2F–3 that you know or have reason to believe are present in the discharge in Table C (except pollutants previously listed in Table B). Answer "Yes" to Item 7.9 once you have completed this task. **Item 7.10.** Indicate whether you expect any of the pollutants from Exhibit 2F–3 to be discharged in concentrations of 10 parts per billion (ppb) or greater. If yes, continue to Item 7.11. If no, skip to Item 7.12.

Item 7.11. Provide quantitative data in Table C for those pollutants in Exhibit 2F–3 that you expect to be discharged in concentrations of 10 ppb or greater (provide actual data for existing dischargers and estimated data for new sources and new dischargers). Answer "Yes" to Item 7.11 once you have completed this task.

Item 7.12. Indicate whether you expect acrolein, acrylonitrile, 2,4-dinitrophenol, or 2-methyl-4,6-dinitrophenol to be discharged in concentrations of 100 ppb or greater. If yes, continue to Item 7.13. If no, skip to Item 7.14.

Item 7.13. Provide quantitative data in Table C for the pollutants identified in Item 7.12 that you expect to be discharged in concentrations of 100 ppb or greater (provide actual data for existing dischargers and estimated data for new sources and new dischargers). Answer "Yes" to Item 7.13 once you have completed this task. **Item 7.14.** For any pollutants you expect to be present in the discharge at concentrations less than 10 ppb (or less than 100 ppb for the above four pollutants), either submit quantitative data or briefly describe the reasons the pollutant is expected to be discharged in Table C. Answer "Yes" to Item 7.14 once you have completed this task.

Item 7.15. Indicate whether you know or have reason to believe any pollutants in Exhibit 2F–4 are present in the discharge. If yes, continue to Item 7.16. If no, skip to Item 7.17.

Item 7.16. For each outfall, list any pollutant in Exhibit 2F–4 that you know or believe to be present in the discharge in Table C and explain why you believe it to be present. No analysis is required, but if you have analytical data, you must report it. Answer "Yes" to Item 7.16 once you have completed this task.

Note: Under 40 CFR 117.12(a)(2), certain discharges of hazardous substances (listed in Exhibit 2F-5) may be exempted from the requirements of CWA Section 311, which establishes reporting requirements, civil penalties, and liability for cleanup costs for spills of oil and hazardous substances. A discharge of a particular substance can be exempted if the origin, source, and amount of the discharged substances are identified in the permit application or in the permit, if the permit contains a requirement for treatment of the discharge, and if the treatment is in place. If you would like to apply for an exemption from the requirements of CWA Section 311, attach additional sheets of paper to your application, setting forth the following information:

- 1. The substance and the amount of each substance that might be discharged.
- 2. The origin and source of the discharge of the substance.
- The treatment to be provided for the discharge by:
 a. An onsite treatment system separate from any treatment system treating your normal discharge;
 - b. A treatment system designed to treat your normal discharge and that is additionally capable of treating the amount of the substance identified under paragraph 1 above; or
 - c. Any combination of the above.

See 40 CFR 117.12(a)(2) and (c) or contact DEQ for further information on exclusions from CWA Section 311.

Item 7.17 and Table D. Provide data for the storm event(s) that resulted in the maximum daily discharges for the flow weighted composite sample in Table D.

If sampling is conducted during more than one storm event, you only need to report the information requested on Table D for the storm event(s) that resulted in any maximum pollutant concentration reported on Tables A through C.

Provide flow measurements or estimates of the flow rate, as well as the total amount of discharge for the storm event(s) sampled, the method of flow measurement, or estimation. Provide the data and duration of the storm event(s) sampled, rainfall measurements, or estimates of the storm event that generated the sampled runoff and the duration between the storm event sampled and the end of the previous measurable (greater than 0.1 inch rainfall) storm event. Answer "Yes" to Item 7.17 once you have completed this task.

Used or Manufactured Toxics

Item 7.18. Review Exhibits 2F–2 through 2F–4 and determine if you currently use or manufacture any of the pollutants listed as intermediate or final products or byproducts. If so, answer "Yes." You should also answer "Yes" if you know or have reason to believe that 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) is discharged or if you use or manufacture 2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5-TP); 2-(2,4,5-trichlorophenoxy) ethyl, 2,2-dichloropropionate (Erbon); 0,0-dimethyl 0-(2,4,5-trichlorphenyl) phosphorothioate (Ronnel); 2,4,5-

trichlorophenol (TCP); or hexachlorophene (HCP). If your answer to Item 7.18 is "No," skip to Section 8. **Item 7.19.** List all of the toxic pollutants identified under Item 7.18, including TCDD. Note that DEQ may waive or modify the requirement if you demonstrate that it would be unduly burdensome to identify each toxic pollutant and the MPDES permitting authority has adequate information to issue your permit. You may not claim any information submitted in response to Item 7.18 as confidential; however, you do not have to distinguish between use or production of the pollutants or list the amounts.

Section 8. Biological Toxicity Testing Data

Item 8.1. Answer whether you know of or have reason to believe that biological toxicity testing has been conducted of your wastewater treatment, including engineering reports or pilot plant studies. If no, skip to Section 9. Otherwise, continue. **Item 8.2.** List any tests of which you are aware and their purposes.

Section 9. Contract Analysis Information

Item 9.1. Indicate if any of the analyses performed in Section 7 were performed by a contract laboratory or consulting firm. If no, skip to Section 10. If yes, continue to Item 9.2.

Item 9.2. Provide the name, address, phone number, and pollutants analyzed by the laboratory or consulting firm(s) in the spaces provided.

Form 2F – Section 10, Certification Statement

Item 10.1. This form must be signed and certified by the appropriate official as given in Section 6 and ARM 17.30.1323. The Montana Water Quality Act provides for penalties of not more than \$25,000 or imprisonment for not more than 6 months, or both, for any person that knowingly makes any false statement, representation, or certification in any application, record, report, plan, or other document filed or required to be maintained under the ACT, or who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required under the Act. 75-5-633, MCA.

This application must be signed as follows:

- A. For a corporation, by a responsible corporate officer. A responsible corporate officer means:
 - 1. a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or
 - 2. the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures
- B. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or
- C. For a municipality, state, federal, or other public agency, by either a principal executive officer or ranking elected official. A principal executive officer of a federal agency includes:
 - 1. The chief executive officer of the agency, or
 - 2. a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency.

Exhibit 2F-1. Codes for Treatment Units and Disposal of Wastes Not Discharged

ЦЛ	mon 21 1. Codes for freatment emits and Dispos	ar of wastes for Dischargea			
1.	Physical Treatment Processes				
	1–AAmmonia stripping	1–MGrit removal			
	1–BDialysis	1–N Microstraining			
	1–CDiatomaceous earth filtration	1–OMixing			
	1–DDistillation	1–PMoving bed filters			
	1-EElectrodialysis	1–QMultimedia filtration			
	1–FEvaporation	1–RRapid sand filtration			
	1–GFlocculation	1–SReverse osmosis (hyperfiltration)			
	1–HFlotation	1–TScreening			
	1–IFoam fractionation	1–USedimentation (settling)			
	1–JFreezing	1–VSlow sand filtration			
	1–KGas-phase separation	1–WSolvent extraction			
	1–LGrinding (comminutors)	1-XSorption			
2.	Chemical Treatment Processes				
	2–ACarbon adsorption	2-GDisinfection (ozone)			
	2–BChemical oxidation	2–HDisinfection (other)			
	2-CChemical precipitation	2–IElectrochemical treatment			
	2–DCoagulation	2–JIon exchange			
	2-EDechlorination	2–KNeutralization			
	2-FDisinfection (chlorine)	2-LReduction			
3.	Biological Treatment Processes				
	3–AActivated sludge	3–EPre-aeration			
	3–BAerated lagoons	3–FSpray irrigation/land application			
	3–CAnaerobic treatment	3–GStabilization ponds			
	3–DNitrification–denitrification	3–H Trickling filtration			
4.	Wastewater Disposal Processes	- 6			
4.	4–ADischarge to surface Water	4-CReuse/recycle of treated effluent			
	4–ADischarge to surface water 4–BOcean discharge through outfall	4–C			
		+-D Onderground injection			
5.	Sludge Treatment and Disposal Processes				
	5–AAerobic digestion	5–MHeat drying			
	5–BAnaerobic digestion	5–NHeat treatment			
	5–CBelt filtration	5–OIncineration			
	5–DCentrifugation	5–PLand application			
	5–EChemical conditioning	5–QLandfill			
	5–FChlorine treatment	5–RPressure filtration			
	5–GComposting	5–SPyrolysis			
	5–HDrying beds	5–TSludge lagoons			
	5–IElutriation	5–UVacuum filtration			
	5–JFlotation thickening	5–VVibration			
	5–KFreezing	5–W Wet oxidation			
	5–LGravity thickening				
F.	Exhibit 2F–2. Conventional and Nonconventional Pollutants (40 CFR 122.21, Appendix D, Table IV)				
ĽX	mon 2r-2. Conventional and Nonconventional Po	nutants (40 CFK 122.21, Appendix D, Table IV)			

Bromide	Surfactants
Chlorine, total residual	Aluminum, total
Color	Barium, total
Fecal coliform	Boron, total
Fluoride	Cobalt, total
Nitrate-nitrite	Iron, total
Nitrogen, total organic (as N)	Magnesium, total
Oil and grease	Molybdenum, total
Phosphorus (as P), total	Manganese, total
Sulfate (as SO ₄)	Tin, total
Sulfide (as S)	Titanium, total
Sulfite (as SO ₃)	Radioactivity (total alpha, total beta, total radium, radium 226)

Exhibit 2F–3. Toxic Pollutants (40 CFR 122.21, Appendix D, Tables II and III)

Toxic Pollutants and Total Phenol					
Antimony, total Copper, total Silver, total					
Arsenic, total Lead, total Thallium, total					
Beryllium, total Mercury, total Zinc, total					
Cadmium, total Nickel, total Cyanide, total					
Chromium, total Selenium, total Phenols, total					
GC/MS Fraction—Volatile Compounds					
Acrolein Dichlorobromomethane 1,1,2,2-tetrachloroetha	ne				
Acrylonitrile 1,1-dichloroethane Tetrachloroethylene					
Benzene 1,2-dichloroethane Toluene					
Bromoform 1,1-dichloroethylene 1,2-trans-dichloroethy	lene				
Carbon tetrachloride 1,2-dichloropropane 1,1,1-trichloroethane	lene				
Chlorobenzene 1,3-dichloropropylene 1,1,2-trichloroethane					
Chlorodibromomethane Ethylbenzene Trichloroethylene					
Chloroethane Methyl bromide Vinyl chloride					
2-Chloroethylvinyl ether Methyl chloride					
Chloroform Methylene chloride					
5					
GC/MS Fraction—Acid Compounds					
2-chlorophenol 2,4-dinitrophenol Pentachlorophenol					
2,4-dichlorophenol 2-nitrophenol Phenol					
2,4-dimethylphenol 4-nitrophenol 2,4,6-trichlorophenol					
4,6-dinitro-o-cresol P-chloro-m-cresol					
GC/MS Fraction—Base/Neutral Compounds					
Acenaphthene 4-chlorophenyl phenyl ether Hexachlorobenzene					
Acenaphthylene Chrysene Hexachlorobutadiene					
Anthracene Dibenzo (a,h) anthracene Hexachlorocyclopenta	diene				
Benzidine 1,2-dichlorobenzene Hexachloroethane					
Benzo (a) anthracene 1,3-dichlorobenzene Indeno (1,2,3-cd) pyre	ene				
Benzo (a) pyrene 1,4-dichlorobenzene Isophorone					
3,4-benzofluoranthene 3,3-dichlorobenzidine Naphthalene					
Benzo (ghi) perylene Diethyl phthalate Nitrobenzene					
Benzo (k) fluoranthene Dimethyl phthalate N-nitrosodimethylami	ne				
Bis (2-chloroethoxy) methane Di-n-butyl phthalate N-nitrosodi-n-propyla					
Bis (2-chloroethyl) ether 2,4-dinitrotoluene N-nitrosodiphenylami	ne				
Bis (2-chloroisopropyl) ether2,6-dinitrotoluenePhenanthrene					
Bis (2-ethylhexyl) phthalate Di-n-octyl phthalate Pyrene					
4-bromophenyl phenyl ether 1,2-diphenylhydrazine (as azobenzene) 1,2,4-trichlorobenzene	e				
Butyl benzyl phthalate Fluoranthene					
2-chloronaphthalene Fluorene					
GC/MS Fraction—Pesticides					
Aldrin Dieldrin PCB-1254					
α-BHC α-endosulfan PCB-1221					
β-BHC β-endosulfan PCB-1232					
γ-BHC Endosulfan sulfate PCB-1248					
δ-BHC Endrin PCB-1260					
Chlordane Endrin aldehyde PCB-1016					
4,4'-DDT Heptachlor Toxaphene					
4,4'-DDE Heptachlor epoxide					
4,4'-DDD PCB-1242					

Exhibit 2F-4. Certain Hazardous Substances and Asbestos (40 CFR 122.21, Appendix D, Table V)

Toxic Pollutant

Asbestos

Hazardous Substances

Acetaldehyde
Allyl alcohol
Allyl chloride
Amyl acetate
Aniline
Benzonitrile
Benzyl chloride
Butyl acetate
Butylamine
Captan
Carbaryl
Carbofuran
Carbon disulfide
Chlorpyrifos
Coumaphos
Cresol
Crotonaldehyde
Cyclohexane
2,4-D (2,4-dichlorophenoxyacetic acid)
Diazinon
Dicamba
Dichlobenil
Dichlone
2,2-dichloropropionic acid
Dichlorvos
Diethyl amine
Dimethyl amine
Dintrobenzene
Diquat
Disulfoton
Diuron
Epichlorohydrin
Ethion
Ethylene diamine
Ethylene dibromide
Formaldehyde
Furfural
Guthion
Isoprene
Isopropanolamine

Kelthane Kepone Malathion Mercaptodimethur Methoxychlor Methyl mercaptan Methyl methacrylate Methyl parathion Mevinphos Mexacarbate Monoethyl amine Monomethyl amine Naled Naphthenic acid Nitrotoluene Parathion Phenolsulfonate Phosgene Propargite Propylene oxide Pyrethrins Quinoline Resorcinol Strontium Strychnine Styrene 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) TDE (tetrachlorodiphenyl ethane) 2,4,5-TP [2-(2,4,5-trichlorophenoxy) propanoic acid] Trichlorofon Triethanolamine Triethylamine Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium

Exhibit 2F-5. Hazardous Substances

1. Acetaldehvde 2. Acetic acid 3. Acetic anhydride 4. Acetone cyanohydrin 5. Acetyl bromide 6. Acetyl chloride 7. Acrolein 8. Acrylonitrile 9. Adipic acid 10. Aldrin 11. Allyl alcohol 12. Allyl chloride 13. Aluminum sulfate 14. Ammonia 15. Ammonium acetate 16. Ammonium benzoate 17. Ammonium bicarbonate 18. Ammonium bichromate 19. Ammonium bifluoride 20. Ammonium bisulfite 21. Ammonium carbamate 22. Ammonium carbonate 23. Ammonium chloride 24. Ammonium chromate 25. Ammonium citrate 26. Ammonium fluoroborate 27. Ammonium fluoride 28. Ammonium hydroxide 29. Ammonium oxalate 30. Ammonium silicofluoride 31. Ammonium sulfamate 32. Ammonium sulfide 33. Ammonium sulfite 34. Ammonium tartrate 35. Ammonium thiocyanate 36. Ammonium thiosulfate 37. Amvl acetate 38. Aniline 39. Antimony pentachloricle 40. Antimony potassium tartrate 41. Antimony tribromide 42. Antimony trichloride 43. Antimony trifluoride 44. Antimony trioxide 45. Arsenic disulfide 46. Arsenic pentoxide 47. Arsenic trichloride 48. Arsenic trioxide 49. Arsenic trisulfide 50. Barium cyanide 51. Benzene 52. Benzoic acid 53. Benzonitrile 54. Benzovl chloride 55. Benzyl chloride 56. Beryllium chloride 57. Beryllium fluoride

58. Beryllium nitrate 59. Butylacetate 60. n-butylphthalate 61. Butylamine 62. Butyric acid 63. Cadmium acetate 64. Cadmium bromide 65. Cadmium chloride 66. Calcium arsenate 67. Calcium arsenite 68. Calcium carbide 69. Calcium chromate 70. Calcium cyanide 71. Calcium dodecylbenzenesulfonate 72. Calcium hypochlorite 73. Captan 74. Carbaryl 75. Carbofuran 76. Carbon disulfide 77. Carbon tetrachloride 78. Chlordane 79. Chlorine 80. Chlorobenzene 81. Chloroform 82. Chloropyrifos 83. Chlorosulfonic acid 84. Chromic acetate 85. Chromic acid 86. Chromic sulfate 87. Chromous chloride 88. Cobaltous bromide 89. Cobaltous formate 90. Cobaltous sulfamate 91. Coumaphos 92. Cresol 93. Crotonaldehyde 94. Cupric acetate 95. Cupric acetoarsenite 96. Cupric chloride 97. Cupric nitrate 98. Cupric oxalate 99. Cupric sulfate 100. Cupric sulfate ammoniated. 101. Cupric tartrate 102. Cyanogen chloride 103. Cyclohexane 104. 2,4-D acid (2,4dichlorophenoxyacetic acid) 105. 2,4-D esters (2,4dichlorophenoxyacetic acid esters) 106. DDT 107. Diazinon 108. Dicamba 109. Dichlobenil 110. Dichlone 111. Dichlorobenzene 112. Dichloropropane

113. Dichloropropene 114. Dichloropropenedichloproropane mix 115. 2,2-dichloropropionic acid 116. Dichlorvos 117. Dieldrin 118. Diethylamine 119. Dimethylamine 120. Dinitrobenzene 121. Dinitrophenol 122. Dinitrotoluene 123. Diquat 124. Disulfoton 125. Diuron 126. Dodecylbenzesulfonic acid 127. Endosulfan 128. Endrin 129. Epichlorohydrin 130. Ethion 131. Ethylbenzene 132. Ethylenediamine 133. Ethylene dibromide 134. Ethylene dichloride 135. Ethylene diaminetetracetic acid (EDTA) 136. Ferric ammonium citrate 137. Ferric ammonium oxalate 138. Ferric chloride 139. Ferric fluoride 140. Ferric nitrate 141. Ferric sulfate 142. Ferrous ammonium sulfate 143. Ferrous chloride 144. Ferrous sulfate 145. Formaldehyde 146. Formic acid 147. Fumaric acid 148. Furfural 149. Guthion 150. Heptachlor 151. Hexachlorocyclopentadiene 152. Hydrochloric acid 153. Hydrofluoric acid 154. Hydrogen cyanide 155. Hvdrogen sulfide 156. Isoprene 157. Isopropanolamine dodecylbenzenesulfonate 158. Kelthane 159. Kepone 160. Lead acetate 161. Lead arsenate 162. Lead chloride 163. Lead fluoborate 164. Lead fluorite 165. Lead iodide 166. Lead nitrate

Exhibit 2F-5. Hazardous Substances

167. Lead stearate 168. Lead sulfate 169. Lead sulfide 170. Lead thiocyanate 171. Lindane 172. Lithium chromate 173. Malathion 174. Maleic acid 175. Maleic anhydride 176. Mercaptodimethur 177. Mercuric cyanide 178. Mercuric nitrate 179. Mercuric sulfate 180. Mercuric thiocyanate 181. Mercurous nitrate 182. Methoxychlor 183. Methyl mercaptan 184. Methyl methacrylate 185. Methyl parathion 186. Mevinphos 187. Mexacarbate 188. Monoethylamine 189. Monomethylamine 190. Naled 191. Naphthalene 192. Naphthenic acid 193. Nickel ammonium sulfate 194. Nickel chloride 195. Nickel hydroxide 196. Nickel nitrate 197. Nickel sulfate 198. Nitric acid 199. Nitrobenzene 200. Nitrogen dioxide 201. Nitrophenol 202. Nitrotoluene 203. Paraformaldehyde 204. Parathion 205. Pentachlorophenol 206. Phenol 207. Phosgene 208. Phosphoric acid 209. Phosphorus 210. Phosphorus oxychloride 211. Phosphorus pentasulfide 212. Phosphorus trichloride 213. Polychlorinated biphenyls (PCB) 214. Potassium arsenate 215. Potassium arsenite 216. Potassium bichromate 217. Potassium chromate 218. Potassium cyanide 219. Potassium hydroxide 220. Potassium permanganate 221. Propargite 222. Propionic acid

223. Propionic anhydride 224. Propylene oxide 225. Pyrethrins 226. Quinoline 227. Resorcinol 228. Selenium oxide 229. Silver nitrate 230. Sodium 231. Sodium arsenate 232. Sodium arsenite 233. Sodium bichromate 234. Sodium bifluoride 235. Sodium bisulfite 236. Sodium chromate 237. Sodium cyanide 238. Sodium dodecylbenzenesulfonate 239. Sodium fluoride 240. Sodium hydrosulfide 241. Sodium hydroxide 242. Sodium hypochlorite 243. Sodium methylate 244. Sodium nitrite 245. Sodium phosphate (dibasic) 246. Sodium phosphate (tribasic) 247. Sodium selenite 248. Strontium chromate 249. Strychnine 250. Styrene 251. Sulfuric acid 252. Sulfur monochloride 253. 2,4,5-T acid (2,4,5trichlorophenoxyacetic acid) 254. 2,4,5-T amines (2,4,5trichlorophenoxy acetic acid amines) 255. 2,4,5-T esters (2,4,5trichlorophenoxy acetic acid esters) 256. 2,4,5-T salts (2,4,5trichlorophenoxy acetic acid salts) 257. 2,4,5-TP acid (2,4,5trichlorophenoxy propanoic acid) 258. 2,4,5-TP acid esters (2,4,5trichlorophenoxy propanoic acid esters) 259. TDE (tetrachlorodiphenyl ethane) 260. Tetraethyl lead 261. Tetraethyl pyrophosphate 262. Thallium sulfate 263. Toluene 264. Toxaphene 265. Trichlorofon 266. Trichloroethylene 267. Trichlorophenol 268. Triethanolamine dodecylbenzenesulfonate 269. Triethylamine 270. Trimethylamine

271. Uranyl acetate

272. Uranyl nitrate 273. Vanadium penoxide 274. Vanadyl sulfate 275. Vinyl acetate 276. Vinylidene chloride 277. Xylene 278. Xylenol 279. Zinc acetate 280. Zinc ammonium chloride 281. Zinc borate 282. Zinc bromide 283. Zinc carbonate 284. Zinc chloride 285. Zinc cvanide 286. Zinc fluoride 287. Zinc formate 288. Zinc hvdrosulfite 289. Zinc nitrate 290. Zinc phenolsulfonate 291. Zinc phosphide 292. Zinc silicofluoride 293. Zinc sulfate 294. Zirconium nitrate 295. Zirconium potassium fluoride 296. Zirconium sulfate 297. Zirconium tetrachloride